
Department of Defense

High Level Architecture

Object Model Template

Version 1.2

13 August 1997

__

Object Model Template, Version 1.2 13 February 1997i

Table of Contents

1. PURPOSE... 1

2. BACKGROUND .. 2

2.1 OBJECT MODEL TEMPLATE RATIONALE ... 2
2.2 FEDERATION OBJECT MODELS ... 2
2.3 SIMULATION OBJECT MODELS ... 3
2.4 RELATION TO OBJECT-ORIENTED OBJECT MODELS... 3

3. HLA OMT COMPONENTS ... 5

3.1 OBJECT CLASS STRUCTURE TABLE... 6
3.1.1 Purpose/Rationale... 6
3.1.2 Table Format .. 8
3.1.3 Inclusion Criteria.. 11
3.1.4 Example ... 13

3.2 INTERACTION CLASS STRUCTURE TABLE.. 14
3.2.1 Purpose/Rationale... 14
3.2.2 Table Format .. 16
3.2.3 Inclusion Criteria.. 19
3.2.4 Example ... 19

3.3 ATTRIBUTE TABLE .. 20
3.3.1 Purpose/Rationale... 20
3.3.2 Table Format .. 21
3.3.3 Inclusion Criteria.. 25
3.3.4 Example ... 26

3.4 PARAMETER TABLE ... 28
3.4.1 Purpose/Rationale... 28
3.4.2 Table Format .. 29
3.4.3 Inclusion Criteria.. 31
3.4.4 Example ... 31

3.5 ATTRIBUTE TABLE/PARAMETER TABLE SUBCOMPONENTS .. 32
3.5.1 Purpose/Rationale... 32
3.5.2 Enumerated Datatype Table.. 32
3.5.3 Complex Datatype Table... 33

4. FOM/SOM LEXICON... 37

4.1 PURPOSE/RATIONALE .. 37
4.2 TABLE FORMATS ... 37

4.2.1 Object Class Definitions ... 37
4.2.2 Interaction Class Definitions... 38
4.2.3 Attribute Definitions... 39
4.2.4 Parameter Definitions... 39

APPENDIX A: TABLE ENTRY NOTATION.. 41

APPENDIX B: ATTRIBUTE/PARAMETER BASETYPES ... 42

__

Object Model Template, Version 1.2 13 February 1997ii

ACRONYMS.. 43

REFERENCES... 44

__

Object Model Template, Version 1.2 13 February 1997iii

List of Tables

TABLE 3-1. OBJECT CLASS STRUCTURE TABLE ... 9

TABLE 3-2. OBJECT CLASS STRUCTURE TABLE - SOM EXAMPLE ... 14

TABLE 3-3 INTERACTION CLASS STRUCTURE TABLE .. 17

TABLE 3-4. INTERACTION CLASS STRUCTURE TABLE - SOM EXAMPLE 20

TABLE 3-5. ATTRIBUTE TABLE.. 22

TABLE 3-6. ATTRIBUTE TABLE - SOM EXAMPLE.. 27

TABLE 3-7. PARAMETER TABLE.. 29

TABLE 3-8. PARAMETER TABLE - SOM EXAMPLE.. 32

TABLE 3-9. ENUMERATED DATATYPE TABLE... 33

TABLE 3-10. ENUMERATED DATATYPE TABLE - SOM EXAMPLE... 33

TABLE 3-11. COMPLEX DATATYPE TABLE... 35

TABLE 3-12. COMPLEX DATATYPE TABLE - SOM EXAMPLE... 36

TABLE 4-1. OBJECT CLASS DEFINITIONS ... 38

TABLE 4-2. INTERACTION CLASS DEFINITIONS.. 38

TABLE 4-3. ATTRIBUTE DEFINITIONS.. 39

TABLE 4-4. PARAMETER DEFINITIONS.. 40

__

Object Model Template, Version 1.2 13 February 1997iv

FOREWORD

The formal definition of the Department of Defense High Level Architecture (HLA)

comprises three main components: the HLA Rules, the HLA Interface Specification, and the HLA

Object Model Template (OMT). This document is intended to provide a complete description of

the essential elements of the third component of the HLA, the OMT. The other two components

of the HLA formal definition are described in the following documents:

•• HLA Rules v1.0

•• HLA Interface Specification v1.2

In addition to these reference documents, the HLA Technical Library contains other

information sources relevant to developing and executing HLA federations. The elements of the

HLA Technical Library that are particularly relevant to HLA object model development include

the following:

•• HLA OMT Extensions: A description of the format and content of optional tables.
These additional tables are intended to document classes of information which are not
required for all HLA federations, but which may be useful for certain types of
applications.

•• HLA Glossary: A common set of semantics for terms used in the documents of the
HLA formal definition or the HLA Technical Library.

•• HLA Federation Development and Execution Process Model: A description of the
process used to build and execute HLA federations.

•• HLA OMT Test Procedures: A set of procedures for testing compliance of an
object model with the HLA OMT.

Other elements of the HLA Technical Library may also have some relevance to HLA

object model construction. Users of this document are encouraged to browse the contents of the

HLA Technical Library to discover sources of potentially relevant information, and to gain a

broader understanding of other general HLA resources.

Object Model Template, Version 1.2 Purpose

__

Object Model Template, Version 1.2 13 February 19971

1. PURPOSE

The Department of Defense (DOD) Modeling and Simulation Master Plan [DOD95] calls for the

establishment of a DOD-wide High Level Architecture (HLA) for modeling and simulation,

applicable to a wide range of functional applications. The purpose of this architecture is to

facilitate interoperability among simulations and promote reuse of simulations and their

components.

To support the general goals of the HLA, this document provides a specification of the

DOD HLA Object Model Template (OMT) for documenting key information about simulations

and federations. More specifically, the HLA OMT provides a template for documenting HLA-

relevant information about classes of simulation or federation objects and their attributes and

interactions. This common template facilitates understanding and comparisons of different

simulations and federations, and provides the format for a contract between members of a

federation on the types of objects and interactions that will be supported across its multiple

interoperating simulations. This document specifies both the type of information content required

and a format for representing that content for HLA object models.

Object Model Template, Version 1.2 Background

__

Object Model Template, Version 1.2 13 February 19972

2. BACKGROUND

2.1 Object Model Template Rationale

A standardized structural framework, or template, for specifying HLA object models is an

essential component of the HLA for the following reasons:

• Provides a commonly understood mechanism for specifying the exchange of data and
general coordination among members of a federation.

• Provides a common, standardized mechanism for describing the capabilities of
potential federation members.

• Facilitates the design and application of common tool sets for development of HLA
object models.

HLA object models may be used to describe an individual federation member (federate), creating

an HLA Simulation Object Model (SOM), or to describe a named set of multiple interacting

federates (federation), creating a Federation Object Model (FOM). In either case, the primary

objective of the HLA Object Model Template (OMT) is to facilitate interoperability between

simulations and reuse of simulation components. All discussion of HLA object models in this

document applies to both SOMs and FOMs unless explicitly stated otherwise.

2.2 Federation Object Models

During development of an HLA federation, it is critical that all federation members achieve a

common understanding as to the nature or character of all required interactions between

participating federates. The primary purpose of an HLA FOM is to provide a specification for

data exchange among federates in a common, standardized format. The content of this data

includes an enumeration of all object and interaction classes pertinent to the federation, along with

a specification of the attributes or parameters that characterize these classes. In addition, an HLA

FOM may include supplemental information as described in the HLA OMT Extensions document.

Taken together, the components of an HLA FOM establish the “information model contract” that

is necessary (but not sufficient) to achieve interoperability among the federates.

Object Model Template, Version 1.2 Background

__

Object Model Template, Version 1.2 13 February 19973

2.3 Simulation Object Models

A critical step in the formation of a federation is the process of determining the composition of

individual simulation systems to best meet the sponsor's overall objectives. An HLA SOM is a

specification of the intrinsic capabilities that an individual simulation could offer to potential HLA

federations. The standard format in which SOMs are expressed facilitates determination of the

suitability of simulation systems for participation in a federation.

The HLA OMT formats described in this document are generally applicable to either

FOMs or SOMs. Thus, SOMs are also characterized in terms of their objects, attributes,

interactions, and parameters. The primary benefit from the common utilization of the OMT

formats for FOMs and SOMs is that it provides a common frame of reference for describing

object models in the HLA community. In some cases, this commonality may even allow SOM

components to be integrated as “piece parts” in a FOM, facilitating rapid FOM construction.

2.4 Relation to Object-Oriented Object Models

While the HLA OMT is the standardized documentation structure for HLA object models, FOMs

and SOMs do not correspond entirely to common definitions of object models in object-oriented

(OO) development methodologies. The HLA object model combines elements of both the static

and dynamic views of traditional OO object models. The static elements of an HLA object model

include object classes, their attributes, and (optionally) associations, but do not currently include

the object operations (or methods) of OO static models. The dynamic component of an HLA

object model currently focuses on pairwise interactions between classes of objects, while OO

dynamic models typically include additional information about sequences of events and state

transition models of objects. Specification of HLA object class hierarchies tends to be driven by

the interests of subscribing simulation systems, rather than the inheritance considerations that tend

to dominate OO development models. HLA object models also differ in that they are ordinarily

expected to contain less detail than an OO development object model since they are not designed

for software development but for federation development.

Not only does the HLA conception of an object model differ from that of traditional OO

object models, but HLA objects themselves also differ from the common OO conception of

objects. Responsibility for updating HLA object attributes may be distributed among different

federates in a federation, whereas OO objects characteristically associate update responsibilities

with operations that are closely tied to the object’s class definition. This difference does not

preclude OO implementations of objects within individual HLA federates; however, federation

objects may transcend their individual representations within specific federates, being defined by

Object Model Template, Version 1.2 Background

__

Object Model Template, Version 1.2 13 February 19974

the composition of all the attribute values published for them by any federate. When a federate

instantiates an object, it initially owns those attributes of the object which it declared it would

publish. However, ownership of some or all of these attributes may be transferred to other

federates during the federation execution. When multiple federates own different attributes of the

same object, responsibility for maintaining the object’s state is effectively distributed across the

federation, unlike a traditional OO object whose state is locally encapsulated.

In addition to the stated differences between HLA object models and traditional OO object

models, there are also some differences in the semantics of the terminology used to describe

similar concepts (e.g., class, object, interaction). Although descriptions of these concepts are

provided later in this document, precise definitions of these terms can also be found in the

separate HLA Glossary document.

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 19975

3. HLA OMT COMPONENTS

HLA object models are composed of a group of interrelated components specifying information

about classes of objects, their attributes, and their interactions. While it is possible to represent the

information content of these components in many different ways, the HLA requires

documentation of these components in the form of tables. The template for the core of an HLA

object model uses a tabular format and consists of the following components:

• Object Class Structure Table: To record the namespace of all simulation/federation
object classes, and to describe their class-subclass relationships.

• Interaction Class Structure Table: To record the namespace of all
simulation/federation interaction classes, and to describe their class-subclass
relationships.

• Attribute Table: To specify features of object attributes in a simulation/federation.

• Parameter Table: To specify features of interaction parameters in a
simulation/federation.

• FOM/SOM Lexicon: To define all of the terms used in the tables.

Both federations and individual simulations (federates) are required to use all five of the

core OMT components when providing an HLA object model, although, in some cases, certain

tables may be empty. Since all object information is classified by object classes, there must be at

least one object class for any meaningful HLA object model. Thus, every HLA object model must

have a Object Class Structure Table containing at least one object class.

While federations typically will support interactions among some of the objects of its

federates, some federates (such as a stealth viewer) might not be involved in interactions, so the

Interaction Class Structure Table may be empty for some HLA object models. If no interactions

are supported in a given object model, the Parameter Table would also be empty. It is expected

that federates will commonly have objects with attributes of interest across the federation, in

which cases, their documentation in the Attribute Table is required. However, a federate or an

entire federation may exchange information solely via interactions, in which case its Attribute

Table may be empty. While the Interaction Class Structure Table, Parameter Table or Attribute

Table may, thus, be empty in some circumstances, an HLA object model would not be of much

use if all of these tables were empty since such a model would not support any exchange of

information between federates except for notifications of the existence of objects.

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 19976

The final HLA OMT component, the FOM/SOM Lexicon, is essential to ensure that the

semantics of the terms used in an HLA object model are understood and documented. Since there

will always be at least one term in an HLA object model, there will always be at least one term

defined in the Lexicon, and ordinarily many more.

Any entry within any of the OMT tables may be annotated with additional descriptive

information outside of the immediate table structure. This “notes” feature permits users to

associate explanatory information with individual table entries as required to facilitate effective

use of the data. The format for attaching a note to a particular table entry is a numerical identifier

enclosed by brackets. The note itself is distinguished by the corresponding identifier, and is

unconstrained in terms of format. If a set of notes is defined for a given FOM or SOM, the notes

must be included as part of the object model description.

In addition to the five OMT components identified above, federates and federations may

also include supplemental categories of descriptive information in order to facilitate a more

complete understanding of the object model. The format and syntax of this optional information is

provided in the OMT Extensions Document.

The basics of each OMT component are presented in the following separate sections along

with a brief review of the rationale for including them in the OMT. The template format for each

component is provided and described. In addition, some criteria are suggested to help guide

decisions on when to include specific simulation or federation features within each of these

components for a specific HLA object model.

3.1 Object Class Structure Table

3.1.1 Purpose/Rationale

The object class structure of an HLA object model is defined by a set of relations between classes

of objects from the simulation or federation domain. An HLA object model class is a collection of

objects with some properties, behavior, relationships, and semantics in common. Each of the

individual objects in a class is said to be a member (or instance) of that class. Class names in an

HLA object model must be defined via the ASCII character set, and must be globally unique: no

class name in an Object Class Structure Table may be identical to any other class name elsewhere

in this table. However, class names may include other class names as parts (textual substrings) to

indicate relations between classes.

An HLA class structure is defined in terms of hierarchical relationships between classes of

objects. Immediate class-to-subclass relationships are represented via the inclusion of the

associated class names in adjacent columns of the Object Class Structure Table. Non-immediate

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 19977

class-to-subclass relationships are derived via transitivity from the immediate relations: if A is a

superclass of B, and B is a superclass of C, then A is a (derived) superclass of C. Superclass and

subclass play inverse roles in these relations: if A is a superclass of B, then B is a subclass of A.

Subclasses can be considered to be specializations, or refinements, of their immediate

superclasses. Subclasses always inherit the characteristics (attributes and interactions) of their

immediate superclass, and may possess additional characteristics to provide the desired

specialization. These types of object class relationships (referred to as “is-a” relationships in the

OO literature) may also be defined in terms of their instances: a class A is a superclass of class B

only if each of the instances of class B are also instances of class A. Under this conception, it is

useful to distinguish derived instances of a class from explicitly declared instances. Once an object

is explicitly declared to be an instance of some object class, it becomes an implicit (or derived)

instance of all the superclasses of that class. For example, if the class M1_Tank is a subclass of

Tank, then an object declared to be an M1_Tank, will be a derived instance of Tank. While some

classes (such as Tank) might be designed for organizational purposes and not intended to have

any explicitly declared instances, such "abstract" classes may still have derived instances.

A class is a root in a class structure if it has no superclasses in that structure. A class is a

leaf of a class structure if it has no subclasses. If each class has at most one immediate superclass,

then the class structure is said to have single inheritance and will form either a tree structure or a

forest of trees, depending upon whether there are one or more roots. If some classes have more

than one immediate superclass, then the class hierarchy is said to have multiple inheritance. HLA

object model class hierarchies must be represented via single inheritance (no multiple inheritance),

although flat structures (with no subclasses) are also permissable.

In general, simulations and other federates participating in a federation execution may

subscribe to object classes at any level of the class hierarchy. By subscribing to all attributes of a

specified object class, a federate is ensured of receiving all attribute value updates of attributes

defined for that class and all of its superclasses for all instances of that class and all instances of its

subclasses. After subscribing to an object class, a federate is notified by the Discover Object

service of the existence of any instances of that class (or its subclasses) which meet their discovery

criteria. The HLA Run-Time Infrastructure (RTI) will report objects as belonging to the most

specific object class or classes to which the federate is directly subscribed and which meets the

federate’s discovery criteria. If the federate subscribes to multiple levels, the RTI’s discovery

notification will identify an object as an instance of the lowest-level class (or classes) to which the

object belongs among those subscribed by the federate.

Object classes provide the means for federation participants to subscribe to information

about all individual instances of objects with common characteristics, such as all M1A1 tanks or

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 19978

F117A fighters. Classes are also essential to specifying characteristics (attributes) of simulation

objects since these are defined relative to classes of objects, not unique to individual instances. In

addition, since basic RTI services (as described in the HLA Interface Specification) support

subscriptions to object classes and their attributes by federates participating in a federation

execution, the RTI requires knowledge of all object classes and their attributes if it is to perform

consistency checks and to support distribution of object information by class to the federates of a

federation execution.

A class hierarchy expands the capabilities of a flat classification scheme by enabling

federates to subscribe to information about broad superclasses of objects, such as all tanks, all

attack fighters, or even all ground vehicles, air vehicles, or sea vehicles. The existence of a class

hierarchy can simplify the subscription to class information when federates are interested in broad

classes of objects. The HLA Interface Specification supports subscription to all attributes of any

class in an object class hierarchy so that federates can easily subscribe to all and only those classes

of interest. An object class hierarchy also supports simplification of the specification of attributes,

by placing common attributes of multiple subclasses in a common superclass. Thus, class

hierarchies enable simpler management of the interests of different federates in the objects and

attributes involved in a federation execution.

The concept and associated benefits of object class hierarchies also extends to interests in

interactions. An object class hierarchy supports modeling of interactions at multiple levels of

specificity with respect to the classes of interacting objects since the objects in a class assume the

interactions of their superclasses. For example, a weapon fire interaction might be specified as a

single relation between any two objects in the platform class, rather than specifying a separate

interaction type for every specific pair of platform subclasses.

3.1.2 Table Format

The object class structure template of Table 3-1 provides a format for representing the class-

subclass hierarchy of object classes. It begins with the most general object classes in the left

column, followed by all their subclasses in the next column, and then a further level of subclasses.

The number of intermediate columns used here depends upon the needs of the federation. A

federation that uses a deeper hierarchy than illustrated by the template of Table

3-1 may add columns as needed. Finally, the most specific object classes are specified by

enumeration in the farthest right column. For cases in which the whole class hierarchy is too

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 19979

O
b

je
ct

 C
la

ss
 S

tr
u

ct
u

re
 T

ab
le

<
cl

as
s>

 (
<

ps
>

)
[<

cl
as

s>
 (

<
ps

>
)]

[<
cl

as
s>

 (
<

ps
>

)]
[<

cl
as

s>
 (

<
ps

>
)]

 [,
<

cl
as

s>
 (

<
ps

>
)]

*
| [

<
re

f>
]

[<
cl

as
s>

 (
<

ps
>

)]

...
...

[<
cl

as
s>

 (
<

ps
>

)]

[<
cl

as
s>

 (
<

ps
>

)]
[<

cl
as

s>
 (

<
ps

>
)]

...
...

[<
cl

as
s>

 (
<

ps
>

)]

...
...

...

<
cl

as
s>

 (
<

ps
>

)
[<

cl
as

s>
 (

<
ps

>
)]

[<
cl

as
s>

 (
<

ps
>

)]

[<
cl

as
s>

 (
<

ps
>

)]

...
...

...
...

...
...[<
cl

as
s>

 (
<

ps
>

)]
 [,

<
cl

as
s>

 (
<

ps
>

)]
*

| [
<

re
f>

]

[<
cl

as
s>

 (
<

ps
>

)]
 [,

<
cl

as
s>

 (
<

ps
>

)]
*

| [
<

re
f>

]

[<
cl

as
s>

 (
<

ps
>

)]
 [,

<
cl

as
s>

 (
<

ps
>

)]
*

| [
<

re
f>

]

[<
cl

as
s>

 (
<

ps
>

)]
 [,

<
cl

as
s>

 (
<

ps
>

)]
*

| [
<

re
f>

]

[<
cl

as
s>

 (
<

ps
>

)]
 [,

<
cl

as
s>

 (
<

ps
>

)]
*

| [
<

re
f>

]

[<
cl

as
s>

 (
<

ps
>

)]
 [,

<
cl

as
s>

 (
<

ps
>

)]
*

| [
<

re
f>

]

Table 3-1. Object Class Structure Table

deep to fit across a single page, a reference (<ref>) to a continuation table may be provided in the

last column. Each object class must have all of its subclasses specified in the next column to its

right or in a continuation table referenced in that column. An example of how such a table may be

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199710

filled in is provided in Section 3.1.4, as well as in the separate HLA OMT Use Cases document.

See Appendix A for a brief description of the notation that is used for specifying entries for this

table. Each object class in the Object Class Structure Table will be followed by information on

publication and subscription capabilities enclosed in parentheses, as designated in the template

using the abbreviated variable name <ps>. Three basic capability levels are distinguished with

respect to a given object class:

publishable (P): The specified object class can be published by a federate using the
Publish Object Class service. This also requires that a federate is capable of
meaningful invocations of the Register Object service using this class’s name.

subscribable (S): A federate is currently capable of utilizing and (potentially) reacting to
information on objects in the specified class. Qualifying for this subscription category
requires the minimal capability of being able to respond appropriately to the RTI
message of Discover Object for objects of this class.

neither publishable or subscribable (N): The object class is neither publishable nor
subscribable by a federate.

These definitions apply equally to FOMs and SOMs, although an object class only needs to be

publishable or subscribable by a single federate in a federation for it to be classified as publishable

or subscribable, respectively, by the federation as a whole.

The publishable and subscribable capabilities are intended to identify meaningful

capabilities of a federation or federate with respect to the associated object classes. Although it is

difficult to formulate precise criteria for distinguishing such capabilities for all possible cases, the

general intended interpretation may be characterized. An object class is publishable by a federate

in this sense only if the federate is capable of somehow modeling the existence of objects in this

class when it instantiates them. It is not enough to be capable of issuing calls to the cited RTI

services for publication or instantiation, which any simulation might easily accomplish for any

arbitrary object class. The publishable designation is intended to allow federates to distinguish

their internal capabilities for modeling objects of the associated classes as well as their ability to

share information about such objects in an HLA federation. An object class is subscribable by a

federate only if the federate can make substantive use of instances of the class when it is notified

of them by the RTI. An object class is not subscribable by a federate if it always ignores

instantiation notices and updates for object attributes in that class. While the HLA requires that

substantive capabilities underlie designations of object classes as publishable or subscribable, the

detailed determination of what is meant by “substantive” for a particular FOM or SOM must be

left to the discretion of their developers.

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199711

The publishable and subscribable capabilities may both be present for an object class, or

various other combinations, depending on the type of class. Classes that are not publishable may

be “abstract”. An abstract class has no explicitly declared instances since instantiations using its

class name are not permitted. However, abstract classes ordinarily have “concrete” subclasses,

i.e., subclasses which can be instantiated. Abstract classes can be useful for subscription purposes,

simplifying some subscriptions to information about objects in their subclasses. Abstract classes

can also simplify the specification of attributes by allowing common attributes of multiple object

classes to be specified once in a common abstract superclass.

An individual federate must specify its publishing and subscription capabilities in its SOM

Object Class Structure Table by any of the four different combinations of publishing and

subscription capabilities from the set {P, S, PS, N}. An object class may be publishable without

being subscribable (P), may be subscribable without being publishable (S), or may both

publishable and subscribable (PS) for an individual federate. In some cases, a federate may even

have an abstract object class in its SOM which is neither publishable nor subscribable (N). Such

an object class might be included in a SOM to provide a convenient grouping of concrete

subclasses for purposes of defining an interaction which could be initiated by an instance of any of

these subclasses. To illustrate, an object class of Ground_Vehicle might be abstract, not

published, and not subscribable, but could provide a convenient means of defining a

Ground_to_Air_Engagement interaction (which is publishable and subscribable). Without such

general classes, a Ground_to_Air_Engagement could not be so succinctly defined as an

interaction between objects in the classes of Ground_Vehicle and Air_Vehicle.

Publication and subscription capabilities for a federation are somewhat different from

those of a single federate. Whenever a federation supports publication of an object class, it must

support subscription as well since it would be useless to publish an object class that could not be

subscribed to within a federation. Thus, the publishable/subscribable capability designations for

an object class in a FOM are taken from the more restricted set {S, PS, N}. This allows the

publication and subscription capabilities recorded in a FOM to distinguish between abstract

classes (S) or (N), and concrete, publishable and subscribable (PS) classes.

3.1.3 Inclusion Criteria

In all HLA object models, any object class that is referenced in any table within the object model

(including any optional information as described in the HLA OMT Extensions document) must

also be included in the object class hierarchy. The criteria for designing a object class hierarchy for

an HLA object model are fundamentally different for individual federates than for federations. The

Object Class Structure Table of a FOM represents an agreement between the federates in a

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199712

federation on how to classify object classes for the purposes of federation executions. The Object

Class Structure Table of a SOM is a type of advertisement of the classes of objects which the

federate can support (as publishable or subscribable) in potential federations. In neither case does

the HLA require specific object classes or object class hierarchies to appear in the Object Class

Structure Table. However, reference to an object class in another component (table) of a FOM or

SOM always requires its inclusion in the Object Class Structure Table.

For individual federates, it is the intrinsic functionality (expressed as classes of objects)

that the federate can offer to future HLA federations, and any object classes whose instances (and

associated attribute values) may potentially represent useful information to that simulation if

generated by other HLA federates, that define the content of the Object Class Structure Table.

The structure of the object class hierarchy is driven by how the federate supports publication and

subscription of the classes in its SOM. Rich, deep SOM class hierarchies provide federates with a

significant degree of flexibility in how they can support and participate in federations in the future.

For federations, it is the subscription requirements of the collective set of simulations

participating in the federation that drive the content and structure of the object class hierarchy.

While a set of concrete object classes for the most specific types of entities involved in a

federation (e.g., M1 tanks and Bradley fighting vehicles) may completely satisfy the subscription

requirements of some types of HLA applications, additional higher-level object classes will be

needed if federates wish to be able to subscribe to object information at higher levels of

abstraction (e.g., tanks, armored vehicles, or ground vehicles). For a federate to be able to

subscribe to object information at a desired level of abstraction, an object class at that level of

abstraction must appear in the Object Class Structure Table. For example, suppose a federation

involved both air, land, and sea forces of many specific types. If a particular federate did not

require notification of the specific types of land vehicles, but did require notification of land

vehicles in its area of interest, then a suitable abstract class (such as Ground_Vehicle) would be

needed to make this possible.

While classes are clearly needed for all objects of interest in a federation, many alternative

class hierarchies can be devised to cover any given set of objects. The particular demarcations and

levels of classes selected for an HLA FOM are the result of the federation development process.

Object class hierarchies that may already exist for individual SOMs may be incorporated into a

FOM object class hierarchy if they meet the interests of the federation as a whole. However, since

new classifications of objects may be warranted to meet federation needs which were not

previously made explicit in any of their participating federates, FOM object classes and their

subclass relations are not constrained to be a subset of those of the SOMs of the participating

federates.

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199713

3.1.4 Example

Table 3-2 illustrates an example of how the Object Class Structure Table may be utilized to

represent a simple system. In this case, the system being represented is a typical neighborhood

restaurant. The simulation of this restaurant’s operations can be considered to be a potential

federate in a larger-scale federation, perhaps representing the combined, coordinated operation of

a chain of restaurants. The intent of this example is not to specify a complete SOM for this

system, but rather to provide partial illustrations as to how the OMT tables may be used to

capture relevant information about the system.

In this example, a subset of a complete object class hierarchy is shown as consisting of five

object classes at the uppermost level. For this particular simulation, no class decomposition was

necessary for the first three classes. For the fourth class, a single level of decomposition is shown

resulting in five leaf classes. For the fifth class, several levels of decomposition are shown to

illustrate a partial representation of the restaurant’s “menu”. Some of the deeper levels in this

hierarchy could have been modeled as attributes (e.g., Clam_Chowder could have been a leaf

node, with an attribute of Type to represent the enumerated values of Manhattan or

New_England). However, the modeler in this example opted to represent the most specific food

types as individual classes. In all cases in this example, abstract classes are designated as

“subscribable” only, while the leaf nodes (concrete classes) are designated as both “publishable”

and “subscribable”.

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199714

Object Class Structure Table
Customer (PS)

Bill (PS)

Order (PS)
Employee (S) Greeter (PS)

Waiter (PS)

Cashier (PS)
Dishwasher (PS)

Cook (PS)

Food (S)

Drink (S) Water (PS)

Coffee (PS)

Soda (S) Cola (PS)

Orange (PS)

Root_Beer (PS)

Appetizer (S) Soup (S) Clam_Chowder (S) Manhattan (PS)

New_England (PS)
Beef_Barley (PS)

Nachos (PS)

Entree(S) Beef (PS)
Chicken (PS)

Seafood (S) Fish (PS)

Shrimp (PS)

Lobster (PS)

Pasta (PS)

Dessert (S) Cake (PS)

Ice_Cream (S) Chocolate (PS)

Vanilla (PS)

Side_Dish(S) Corn (PS)

Broccoli (PS)

Baked Potato (PS)

Main_Course (PS)

Table 3-2. Object Class Structure Table - SOM Example

3.2 Interaction Class Structure Table

3.2.1 Purpose/Rationale

An interaction is an explicit action taken by an object (or set of objects) in one federate that may

potentially have some impact or effect on object(s) in a different federate. Interactions are

specified in the Interaction Class Structure Table of HLA object models in terms of their class-

subclass relationships, in much the same way that objects are described in the Object Class

Structure Table. The hierarchical structure of interactions supported by this table is composed of

relations of generalization (or specialization) between different types of interactions. For example,

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199715

an engagement interaction might be specialized by air-to-ground engagements, ship-to-air

engagements, and others. This engagement interaction, then, would be said to generalize its more

specific types. If there are no generalizations of interaction types for a federation or simulation,

then the interaction structure will be flat, consisting of a set of unstructured interactions.

An interaction hierarchy in an HLA object model is designed to support inheritance in

subscriptions. When a federate subscribes to an interaction class, using the Subscribe Interaction

Class service, it receives notification of all interactions that occur during a federation execution

which are identified as belonging to that class or any of its subclasses. Subscribing to an

engagement interaction, for example, would result in notification of all air-to-ground engagements

and ship-to-air engagements if they are subclasses of this interaction.

Interaction parameters in HLA object models are used to record whatever information is

required to specify some features or properties of an interaction which are needed to calculate its

effects by a receiving object. Examples of interaction parameters include object class names,

object attributes, strings, and numerical constants. The values of all applicable interaction

parameters are included with the interaction class name whenever federates invoke the Send

Interaction service during a federation execution. The identification of interaction parameters,

along with their class associations and details on their characteristics (such as resolution and

accuracy) may be found in the Parameter Table of an HLA object model.

Interaction parameters may be associated with an interaction class at any level of an

interaction class hierarchy. Interaction classes will always inherit the parameters defined for its

superclasses. In fact, the mechanisms and rules for inheritance of interaction parameters are

identical to that of object attributes. Thus, the specific placement of parameters throughout an

interaction class hierarchy for a given federation is driven by the same types of subscription needs

and requirements that drive the placement of attributes in an object class hierarchy.

Interactions are one of the principal determinants of interoperability among simulations.

Interoperability ordinarily requires some consistency in the treatment of interactions afforded by

the different federates in which they appear. In distributed war fighting, for example, some

uniformity in treatment of engagement interactions is commonly required to ensure a fair fight

between objects owned by different federates. Thus, it is essential that all interactions in a FOM

be identified and that all federates in an HLA federation treat the specified interactions in a

uniform fashion.

In addition, the types of interactions involved in a simulation execution must be made

known to the RTI in order to support publication and subscription to their occurrences. Thus, the

HLA object model must document all of the interactions that may be sent during a federation

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199716

execution so that the RTI can recognize them. Specification of the parameters of interactions in

the object model serves to identify the specific information that must be provided by any federate

sending this interaction, and responded to by any federate whose objects are recipients of its

effects.

3.2.2 Table Format

The template for recording object interactions for a federation or an individual federate is

illustrated in Table 3-3. The basic format for this table follows the format specified earlier for the

Object Class Structure Table. Thus, the most general (root) interaction classes should be specified

in the left-most column, with increasing degrees of class specificity being provided by additional

columns (as necessary) in a rightward direction. Like the Object Class Structure Table, additional

columns may be added to the table as needed to specify the full hierarchy, and references (<ref>)

to a continuation table for deep hierarchies may be provided if desired. Interaction names in an

HLA object model must be defined via the ASCII character set, and must be globally unique: no

interaction name in an Interaction Class Structure Table may be identical to any other interaction

name elsewhere in this table. See Appendix A for a description of the syntax used for specifying

entries in this table.

Similar to the <ps> designations provided in the Object Class Structure Table, the

Interaction Class Structure Table also provides certain designations of federate/federation

capabilities with respect to given classes of information. This is shown in the template as the

abbreviated variable name <isr>. These designations should always be specified for SOMs, while

FOMs also include this information for uniformity. Four basic categories are used to indicate

capabilities with respect to a given type of interaction:

initiates (I): indicates that a federate is currently capable of initiating and sending
interactions of the given type.

senses (S): indicates that a federate is currently capable of subscribing to the interaction
and utilizing the interaction information, without necessarily being able to effect the
appropriate changes to affected objects.

reacts (R): indicates that a federate is currently capable of subscribing and properly
reacting to interactions of the type specified by effecting the appropriate changes to
any owned attributes of affected objects.

neither initiates, senses, or reacts (N): indicates that a federate is not currently capable of
initiating, sensing, or reacting to this interaction class.

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199717

 In
te

ra
ct

io
n

 C
la

ss
 S

tr
u

ct
u

re
 T

ab
le

<
cl

as
s>

 (
<

is
r>

)
[<

cl
as

s>
 (

<
is

r>
)]

[<
cl

as
s>

 (
<

is
r>

)]
[<

cl
as

s>
 (

<
is

r>
)]

 [,
<

cl
as

s>
 (

<
is

r>
)]

*
| [

<
re

f>
]

[<
cl

as
s>

 (
<

is
r>

)]

...
...

[<
cl

as
s>

 (
<

is
r>

)]

[<
cl

as
s>

 (
<

is
r>

)]
[<

cl
as

s>
 (

<
is

r>
)]

...
...

[<
cl

as
s>

 (
<

is
r>

)]

...
...

...

<
cl

as
s>

 (
<

is
r>

)
[<

cl
as

s>
 (

<
is

r>
)]

[<
cl

as
s>

 (
<

is
r>

)]

[<
cl

as
s>

 (
<

is
r>

)]

...
...

...
...

...
...[<

cl
as

s>
 (

<
is

r>
)]

 [,
<

cl
as

s>
 (

<
is

r>
)]

*
| [

<
re

f>
]

[<
cl

as
s>

 (
<

is
r>

)]
 [,

<
cl

as
s>

 (
<

is
r>

)]
*

| [
<

re
f>

]

[<
cl

as
s>

 (
<

is
r>

)]
 [,

<
cl

as
s>

 (
<

is
r>

)]
*

| [
<

re
f>

]

[<
cl

as
s>

 (
<

is
r>

)]
 [,

<
cl

as
s>

 (
<

is
r>

)]
*

| [
<

re
f>

]

[<
cl

as
s>

 (
<

is
r>

)]
 [,

<
cl

as
s>

 (
<

is
r>

)]
*

| [
<

re
f>

]

[<
cl

as
s>

 (
<

is
r>

)]
 [,

<
cl

as
s>

 (
<

is
r>

)]
*

| [
<

re
f>

]

Table 3-3 Interaction Class Structure Table

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199718

A capability of initiates for an interaction requires not just the ability to call the HLA

Publish Interaction Class service for that interaction, but also the ability to model the initiation of

the interaction and to invoke the HLA Send Interaction service for such interactions when

initiated.

A federate senses a class of interactions if it is capable of utilizing information about such

interactions via a Receive Interaction message after having invoked the Subscribe Interaction

Class service. It is not enough to simply be capable of receiving such interaction messages, which

any HLA compliant federate may do, but the information received in such messages must be used

somehow by the federate. For example, a stealth viewer that is incapable of determining the

effects of interactions might subscribe to them in order to adjust its display accordingly (e.g., to

show flashes during weapons fire). Such a viewer senses these types of interactions, even though

it never reacts to them, as described next.

A federate reacts to a class of interactions only if has the capability for publishing affected

attributes of receiving objects. In this case, the federate must also be capable of updating the

values of those attributes to properly reflect the effects of the interaction. Naturally, not all

interactions may require changes to attribute values, but instead may involve changes to internal

states that affect attribute value updates. Minimally, a reacts capability for an interaction class

requires a federate’s ability to respond appropriately to the Receive Interaction calls from the RTI

for such interactions. Appropriate response capabilities include the ability to alter future updates

of some of the affected attributes, i.e., to affect the behavior of the affected objects.

Merely being able to reflect changes to the attribute values of objects affected by an

interaction does not represent a reacts capability for the interaction. A simulation that simply

reflects the consequences of some interaction in virtue of reflecting changes to the attribute values

of its affected objects without being able to generate such changes itself is described as reflecting

the attribute, not reacting to the interaction.

An individual federate may support several combinations of initiating, sensing, and

reacting to a given interaction class, as chosen from the set {I, S, R, IS, IR, or N}. Any

interaction class specified in the SOM of a federate must have one of these combinations of

Init/Sense/React capabilities. Interaction classes specified in a FOM may choose appropriate

designations from this same set, with the exception of the singular I designation. This is because,

in a federation, at least one federate must sense or react to every interaction class that is initiated.

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199719

3.2.3 Inclusion Criteria

A type of interaction should be included in a FOM whenever it can take place “across” a

federation, i.e., when it is an “external” type of interaction. Common examples of such

interactions in warfighting simulations include a variety of engagement interactions between

platforms which may be owned by different federates. It is essential for a FOM to include all

external interactions in order to document the types of interactions that federation members may

need to accommodate.

When interactions are not expected to occur across a federation, they need not appear in

an HLA FOM. For example, in an engineering simulation, the interactions involved in the internal

dynamics of a vehicle engine might not be part of a FOM if no other federate in the federation will

interact directly with the engine component.

Since HLA SOMs are intended to be developed independently of any particular federation

application, the particular relevance of any currently supported interaction class to future

federations will generally be unknown. Thus, a simulation which supports either initiating,

sensing, or reacting for an interaction class should ordinarily document that support in its SOM if

it is considered of possible interest to future federations.

3.2.4 Example

A representation of some illustrative interactions, based on the restaurant example

introduced in Section 3.1.4, is given in Table 3-4. Here, the operations of the restaurant are

described according to a set of interactions between customers and the employees of the

restaurant. At the highest level, the restaurant federate can initiate generic customer-employee

transactions. This would, for instance, allow federates which simulate management operations

across the restaurant chain to subscribe to and monitor general activity levels for individual

restaurants. This single high-level interaction class is then decomposed into the basic types of

customer-employee interactions that occur in the restaurant. While all classes at this second level

can be directly initiated by the federate, Order_Taken, Food_Served, and Pay_Bill are all further

decomposed into more specialized classes that can also be directly initiated by the restaurant

federate depending on the needs of the federation. In addition, this federate also shows the ability

to sense (S designation) interactions of classes Customer_Seated and Customer_Leaves, possibly

to monitor customer arrival activity in other restaurants within the chain, and to monitor the rate

at which other restaurants can service their customers.

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199720

 Interaction Class Structure Table

Customer_
Employee_
Transactions (I)

Customer_Seated (IS)

Order_Taken (I)

Food_Served (I)

Customer_Pays (I)

Customer_Leaves (IS)

Order_Taken_
From_Kids_Menu (I)

Order_Taken_
From_Adult_Menu (I)

Appetizer_Served (I)

Main_Course_Served (I)

Dessert_Served (I)

Pay_Bill_by_
Credit_Card (I)

Pay_Bill_by_
Cash (I)

Table 3-4. Interaction Class Structure Table - SOM Example

3.3 Attribute Table

3.3.1 Purpose/Rationale

Each class of simulation domain objects is characterized by a fixed set of attribute types. These

attributes are named portions of their object’s state whose values can change over time (such as

location or velocity of a platform). Updates to the values of HLA object class attributes are

published through the RTI and provided to other federates in a federation. An HLA object model

documents all such object attributes in the Attribute Table.

An HLA object model supports representation of the following characteristics for

attributes in the Attribute Table:

• Object class • Units • Update type

• Attribute name • Resolution • Update rate/Condition

• Datatype • Accuracy • Transferable/Acceptable

• Cardinality • Accuracy condition • Updateable/Reflectable

The object class specifies the class of objects to which the attribute applies. The attribute

name identifies the attribute. The datatype column specifies the datatype of each attribute. The

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199721

units entries identify the units (such as m, km, kg) used for attribute values. A resolution

characteristic is intended to record how finely the published values of an attribute may differ from

each other. When attribute values take numeric values, a minimum possible quantitative variation

in attribute value may be recorded here. When attribute values are discrete, then this fact may be

recorded.

The accuracy of an attribute captures the maximum deviation of the attribute value from

its intended value in the simulation or federation. This is often expressed as a numeric value, but

may also be perfect for attributes which have no deviation from intended values. The accuracy

condition of an attribute specifies any conditions required for the given accuracy to hold at any

given time during simulation/federation execution. It may consist of a reference to a particular

type of update algorithm that determines the accuracy, or may be an unconditional always.

The update type and update condition characteristics specify the update policies for the

attribute. The transferable/acceptable characteristic provides an indication of whether ownership

of the attribute can be transferred to or accepted from different federates. Finally, the

updateable/reflectable characteristic is used to indicate capabilities for updating and reflecting the

attribute.

Attributes of HLA object classes must be specified in order to support subscription to

their values by other interested members of a federation. Thus, the names of attributes and

associated object classes are essential information when initializing a federation execution.

Knowledge of object attributes is commonly required for effective communication between

federates in a federation. In addition, while the resolutions, accuracies, and update policies of

attributes represent characteristics that are not directly utilized by the RTI (as defined by the HLA

Interface Specification), all are important to ensuring compatibility between federates in a

federation. A federate operating with very low resolution, accuracy, or update rates for an

attribute that it is publishing could create problems for interacting federates that are operating at

higher resolutions, accuracies, or update rates. The specification of resolutions, accuracies, and

update rates in an HLA FOM is a part of the FOM “contract” between federates to interoperate at

the specified levels. It helps ensure a common perception of the simulation space across federates

in a federation, lowering the potential for inconsistency.

3.3.2 Table Format

The Attribute Table of a FOM is designed to provide descriptive information about all object

attributes represented in a federation. The template for the Attribute Table is provided by Table 3-

5. See Appendix A for a brief description of the syntax used for specifying entries in this table.

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199722

A

tt
ri

b
u

te
 T

ab
le

O
b

je
ct

A

tt
ri

b
u

te

D
at

a-

ty
p

e
C

ar
d

i-
n

al
it

y
U

n
it

s
R

es
o

lu
ti

o
n

A
cc

u
ra

cy
A

cc
u

ra
cy

C

o
n

d
it

io
n

U
p

d
at

e
T

yp
e

U
p

d
at

e
C

o
n

d
it

io
n

T
/A

U
/R

<
cl

as
s>

<
at

tr
ib

ut
e>

<

da
ta

ty
pe

>
[<

si
ze

>
]

<
un

its
>

<
re

so
lu

tio
n>

<
ac

cu
ra

cy
>

<
co

nd
iti

on
>

<
ty

pe
>

<
ra

te
>

 |
<

co
nd

iti
on

>
<

ta
>

<
ur

>

<
at

tr
ib

ut
e>

<
da

ta
ty

pe
>

[<
si

ze
>

]
<

un
its

>
<

re
so

lu
tio

n>
<

ac
cu

ra
cy

>
<

co
nd

iti
on

>
<

ty
pe

>
<

ra
te

>
 |

<
co

nd
iti

on
>

<
ta

>
<

ur
>

...
...

...
...

...
...

...
...

...
...

<
at

tr
ib

ut
e>

<
da

ta
ty

pe
>

[<
si

ze
>

]
<

un
its

>
<

re
so

lu
tio

n>
<

ac
cu

ra
cy

>
<

co
nd

iti
on

>
<

ty
pe

>
<

ra
te

>
 |

<
co

nd
iti

on
>

<
ta

>
<

ur
>

<
at

tr
ib

ut
e>

<

da
ta

ty
pe

>
[<

si
ze

>
]

<
un

its
>

<
re

so
lu

tio
n>

<
ac

cu
ra

cy
>

<
co

nd
iti

on
>

<
ty

pe
>

<
ra

te
>

 |
<

co
nd

iti
on

>
<

ta
>

<
ur

>

...
...

...
...

...
...

...
...

...
...

<
at

tr
ib

ut
e>

<

da
ta

ty
pe

>
[<

si
ze

>
]

<
un

its
>

<
re

so
lu

tio
n>

<
ac

cu
ra

cy
>

<
co

nd
iti

on
>

<
ty

pe
>

<
ra

te
>

 |
<

co
nd

iti
on

>
<

ta
>

<
ur

>

...
...

...
...

...
...

...
...

...
...

...

 T
/A

 -
 T

ra
ns

fe
ra

bl
e/

A
cc

ep
ta

bl
e

U
/R

 -
 U

pd
at

ea
bl

e/
R

ef
le

ct
ab

le

<
cl

as
s>

<
cl

as
s>

...

Table 3-5. Attribute Table

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199723

The first column (Object) lists the names of object classes. The classes can be chosen from

any level of generality in the class structure hierarchy. In general, it will reduce redundancy if

attributes are specified for classes at the highest point in the hierarchy to which they generally

apply, although this is not required. For example, if all air vehicles have an attribute of minimum

turn radius at maximum speed, then it will avoid some redundancy if this attribute is specified just

once for the entire class of Air_Vehicle. Given that all object classes inherit the attribute types of

their superclasses, the subclasses of Air_Vehicle, such as Fixed_Wing and Rotary_Wing, also

have this attribute with its specified characteristics. When a subclass requires a revision to any

inherited attribute characteristic, a new attribute must be defined for the subclass with the required

characteristics.

The second column (Attribute) lists the attributes of the specified object class. The names

assigned to attributes of any particular object class must be defined via the ASCII character set,

and cannot duplicate (overload) the names of attributes of any higher-level superclasses. There

may be many attributes for a single object class.

The Datatype column is used to reference the datatype of the attribute. This datatype can

be chosen from the list of permissible base attribute/parameter types (as described in Appendix B),

or it can be a user-defined datatype. User-defined datatype names must be different than (not

overload) the names of the base attribute types. When an attribute can take on a value of one of

the base datatypes, that datatype should be recorded in the datatype column. For attributes that

can take on a known fixed set of possible values, the Enumerated Datatype Table (Section 3.5.2)

should be used to characterize the datatype. Once the enumerated type has been defined, it can be

recorded in the datatype column of such attributes. For attributes whose values cannot be

described by a single base or enumerated datatype, the Complex Datatype Table (Section 3.5.3),

must be used to define a new type by aggregating other datatypes into a structure. Once defined

in the Complex Datatype Table, the complex type can be recorded in the datatype column of such

attributes.

The Cardinality column is used to record the size of an array or sequence. A designation

of 1+ in this column allows for unbounded sequences. Cardinalities of multi-dimensional arrays

should include the sizes of every dimension listed in their normal order of precedence. A one (1)

should be entered in this column for any attribute that is composed of a single instance of the

datatype indicated in the Datatype column. Values other than one in this column indicates that the

attribute is an array or sequence of the datatype indicated in the Datatype column.

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199724

The Units, Resolution, Accuracy, and Accuracy Condition columns are not applicable if

the datatype for an attribute is either enumerated or both complex and heterogeneous. The reason

is that these classes of information are either unnecessary (for enumerated datatypes), or are

recorded for the individual fields of complex datatypes in the Complex Datatype Table. For these

and other datatypes in which units, resolution, and accuracy information do not apply (e.g.,

strings), the designator N/A for “Not Applicable” should be entered.

The Units column contains the units (e.g., m, km, kg) used for each attribute whenever

such units exist. Any units entered in this column specify the units of the entries in the Resolution

and Accuracy columns that follow it.

The Resolution column may have different kinds of entries, depending upon the kind of

attribute. For attributes of scalar numerical measures, the resolution column may contain a single

dimensioned numeric entry for each row of the table. This value may specify the smallest

resolvable value separating attribute values that can be discriminated. However, when such

attributes or parameters are stored in floating point datatypes, their resolution so defined might

vary with the magnitude of the attribute value. Hence, in these cases and others, a better sense of

the resolution may be conveyed by the datatype.

The Accuracy column is intended to capture the maximum deviation of the attribute value

from its intended value in the federate or federation. This is ordinarily expressed as a dimensioned

value, but may also be perfect for many discrete or enumerated attributes. The Accuracy

Condition column contains any conditions required for the given accuracy to hold in a given

simulation or federation execution. It may consist of reference to a particular type of update

algorithm that determines the accuracy, or may be an unconditional always.

The Update Type and Update Condition columns record the update policies for an

attribute. The update type can be specified as static, periodic, or conditional. When the update

type is periodic, then a rate of number of updates per time-unit can be specified in the Update

Condition column. Attributes with a conditional update type may have the conditions for update

specified in the update condition column.

The Transferable/Acceptable (T/A) column is handled somewhat differently for

simulations and federations. In a federation, if an attribute is transferable from a federate, it must

be acceptable by some federate in the federation. But a single federate may be able to transfer

ownership of an attribute without being able to accept hand-off of attribute ownership from

another federate. The basic alternatives for the Transferable/Acceptable column are as follows:

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199725

Transferable (T): a federate is currently capable of publishing and updating attributes of
the type specified for the object class, and can transfer ownership of the attribute to
another simulation using the HLA ownership management services.

Acceptable (A): a federate is currently capable of accepting ownership of this attribute
from another federate, including the capability for meaningful continuation of attribute
updates.

Not transferable or acceptable (N): a federate is not currently capable of either
transferring ownership of this attribute to another federate or accepting ownership of
this attribute from another federate.

For an attribute of a SOM, the transferable/acceptable variable <ta> may take any of the values

from the set {T, A, TA, N}. In a FOM, the only valid entries in this column for federation

attributes are TA or N.

The Updateable/Reflectable (U/R) column of the Attribute Table is used to identify the

current capabilities of a federate with respect to attribute updating and reflection. Two basic

categories are used to indicate capabilities with respect to a given attribute:

Updateable (U) - the federate is currently capable of publishing and updating attributes of
the type specified for the object class specified using the Publish Object Class and
Update Attribute Values services.

Reflectable (R) - the federate is currently capable of accepting changes to this type of
attribute for objects in the specified object class for values provided from calls to the
Reflect Attribute Values service from the RTI.

For an attribute of a SOM, the updateable/reflectable variable <ur> in the Attribute Table

may take any of three different combinations of capabilities for updating and reflecting, as

designated by their abbreviations {U, R, UR}. In a SOM, any listed attribute must be either

updateable or reflectable or both. For federations, the appropriate entry should always be UR

since all attributes in a FOM should be both updateable and reflectable.

3.3.3 Inclusion Criteria

All object attributes whose values may be exchanged during the course of an HLA federation

execution should be documented in the Attribute Table of a FOM. All attributes that can be either

updated or reflected by an individual federate belong in the Attribute Table of its SOM.

In some object model descriptions, it may be desirable to document the capability or intent

to transfer the privilege of deleting the instantiation of a particular object class from one federate

to another. In this case, the attribute “privilegeToDeleteObject”, which is automatically created

by the RTI when instantiating an object, should be included in the Attribute Table to document

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199726

the applicable transferability characteristics. If omitted from the table, this privilege is assumed to

be neither transferable or acceptable.

3.3.4 Example

Table 3-6 shows illustrative examples of attributes from the restaurant application as described in

Section 3.1.4. In the first entry, the Employee object is characterized according to the four

attributes shown in the table. The datatypes specified for each of the first three attributes were

selected from the list of attribute/parameter basetypes (Appendix B), while the datatype of the

fourth attribute is user defined. As with all user-defined datatypes, the indicator N/A is placed in

the Units, Resolution, Accuracy, and Accuracy Condition columns. Each of these four attributes

is updated conditionally except for the Years_of_Service attribute, which is updated periodically

(yearly) on the employee’s start date anniversary. The Update Condition column for the Pay_Rate

attribute is annotated with an explanatory “note” as described earlier in Section 3. As with all of

the attributes shown in this example, the attributes of Employee are assumed transferable,

acceptable, updateable, and reflectable.

The Waiter subclass of Employee is shown with three attributes. These are in addition to

the four inherited attributes from its superclass. Each of the first two attributes, Efficiency and

Cheerfulness, is intended to represent a numeric score (performance measure), that is assigned to

the employee at yearly performance reviews. The third attribute is intended to represent the state

of the employee (the task he/she is performing) at any given point in time during restaurant

operations. The characterization of this attribute is via an enumerated datatype which is described

in a separate table.

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199727

A

tt
ri

b
u

te
 T

ab
le

O
b

je
ct

A

tt
ri

b
u

te
D

at
a-

ty

p
e

C
ar

d
i-

n
al

it
y

U
n

it
s

R
es

o
-

lu
ti

o
n

A
cc

u
ra

cy
A

cc
u

ra
cy

C

o
n

d
it

io
n

U
p

d
at

e
T

yp
e

U
p

d
at

e
C

o
n

d
it

io
n

T
/A

U
/R

E
m

pl
oy

ee
P

ay
_R

at
e

F
lo

at
1

C
en

ts
/

H
ou

r
1

pe
rf

ec
t

al
w

ay
s

co
nd

i-
tio

na
l

M
er

it
In

cr
ea

se
s

[1
]

T
A

U
R

Y
ea

rs
_o

f_
S

er
vi

ce
S

ho
rt

1
Y

ea
rs

1
pe

rf
ec

t
al

w
ay

s
pe

rio
di

c
1/

ye
ar

, o
n

A
nn

iv
er

sa
ry

T
A

U
R

H
om

e_
N

um
be

r
S

tr
in

g
1

N
/A

pe
rf

ec
t

al
w

ay
s

co
nd

i-
tio

na
l

E
m

pl
oy

ee
R

eq
ue

st
T

A
U

R

E
ffi

ci
en

cy
S

ho
rt

1
N

/A
1

pe
rf

ec
t

al
w

ay
s

pe
rio

di
c

P
er

fo
rm

an
ce

R
ev

ie
w

T
A

U
R

C
he

er
fu

ln
es

s
S

ho
rt

1
1

pe
rf

ec
t

al
w

ay
s

pe
rio

di
c

T
A

U
R

S
ta

te
W

ai
te

r_
T

as
ks

1
co

nd
i-

tio
na

l
W

or
k

F
lo

w
T

A
U

R

W
ai

te
r

H
om

e_
A

dd
re

ss
A

dd
re

ss
_

T
yp

e
1

co
nd

i-
tio

na
l

E
m

pl
oy

ee
R

eq
ue

st
T

A
U

R

N
/A

N
/A

P
er

fo
rm

an
ce

R
ev

ie
w

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

[1
] M

er
it

ra
is

es
 a

re
 n

ot
 p

ro
vi

de
d

ac
co

rd
in

g
to

 a
ny

 r
eg

ul
ar

 ti
m

e
in

te
rv

al
, b

ut
 a

re
 p

ro
vi

de
d

on
 a

 s
up

er
vi

so
r’s

 r
ec

om
m

en
da

tio
n

ba
se

d
on

 e
vi

de
nc

e
of

 e
xc

ep
tio

na
l e

ffo
rt

 a
nd

 p
er

fo
rm

an
ce

.

Table 3-6. Attribute Table - SOM Example

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199728

3.4 Parameter Table

3.4.1 Purpose/Rationale

Most interaction classes will be characterized according to a list of one or more interaction

parameters. Interaction parameters are used to associate relevant and useful information with

classes of interactions. While some subscribers of interactions may not require all associated

parameters, others will need the full set of parameter-specified information to support calculation

of new attribute values for objects affected by the interaction. For every interaction class

identified in the Interaction Class Structure Table, the full set of parameters associated with that

interaction class must be described in the Parameter Table.

An HLA object model supports representation of the following characteristics for

parameters in the Parameter Table:

• Interaction class • Units

• Parameter name • Resolution

• Datatype • Accuracy

• Cardinality • Accuracy condition

The interaction class specifies the class of interactions to which the parameter applies. The

parameter name identifies the parameter. The datatype column specifies the datatype of each

parameter. The units column identifies the units (such as m, km, kg) used for parameter values. A

resolution characteristic is intended to record how finely the values of a given parameter may

differ from each other. When parameter values take numeric values, a minimum possible

quantitative variation in parameter value may be recorded here. When parameter values are

discrete, then this fact may be recorded.

The accuracy of a parameter captures the maximum deviation of the parameter value from

its intended value in the simulation or federation. This is often expressed as a numeric value, but

may also be perfect for parameters which have no deviation from intended values. The accuracy

condition of a parameter specifies any conditions required for the given accuracy to hold at any

given time during simulation/federation execution. This entry may be an unconditional always if

appropriate.

Unlike object attributes, interaction parameters may not be subscribed to on an individual

basis. However, the use of inheritance does allow individual parameters to be specified at the

level of the interaction class hierarchy which meets the subscription needs of the federation. The

names and placement of parameters throughout the interaction class hierarchy thus represents

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199729

critical initialization data for a federation execution. The specification of parameter

characterization data (e.g., units, resolutions, accuracies) is required in order to avoid inconsistent

treatment of this data between federates.

3.4.2 Table Format

The Parameter Table of an HLA object model is designed to provide descriptive information

about all interaction parameters represented in a federation. The template for the Parameter Table

is provided by Table 3-7. See Appendix A for a brief description of the syntax used for specifying

entries in this table.

Parameter Table

Interaction Parameter Data-
type

Cardi-
nality

Units Resolution Accuracy Accuracy
Condition

<interaction> <parameter> <datatype> [<size>] <units> <resolution> <accuracy> <condition>

<parameter> <datatype> [<size>] <units> <resolution> <accuracy> <condition>

...

<parameter> <datatype> [<size>] <units> <resolution> <accuracy> <condition>

<parameter> <datatype> [<size>] <units> <resolution> <accuracy> <condition>

...

<parameter> <datatype> [<size>] <units> <resolution> <accuracy> <condition>

...

<interaction>

<interaction>

...

...

...

Table 3-7. Parameter Table

The first column (Interaction) lists an interaction class name. The classes can be chosen

from any level of generality in the class structure hierarchy. In general, it will reduce redundancy if

parameters are specified for classes at the highest point in the hierarchy in which they represent

useful information, although this is not required. For example, if all weapon firings include a

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199730

parameter that defines the infrared signature of the platform at the time the firing occurs, then it

will avoid some redundancy if this parameter is specified just once at the uppermost level of a

Weapon_Fires class. Given that all interaction subclasses inherit the parameter types of their

superclasses, the subclasses of Weapon_Fires, such as Tank_Fires and TEL_Fires, also have this

parameter with its specified characteristics. When a subclass requires a revision to any inherited

parameter characteristic, a new parameter must be defined for the subclass with the required

characteristics.

The second column (Parameter) lists the parameters of an interaction. The names assigned

to parameters of any particular interaction class must be defined via the ASCII character set, and

cannot duplicate (overload) the names of parameters of any higher-level superclasses. There may

be many parameters for a single interaction class.

The Datatype column is used to reference the datatype of the parameter. This datatype can

be chosen from the list of permissible base attribute/parameter types (as described in Appendix B),

or it can be a user-defined datatype. User-defined datatype names must be different than (not

overload) the names of the base parameter types. When a parameter can take on a value of one of

the base datatypes, that datatype should be recorded in the datatype column. For parameters that

can take on a known fixed set of possible values, the Enumerated Datatype Table (Section 3.5.2)

should be used to characterize the datatype. Once the enumerated type has been defined, it can be

recorded in the datatype column of such parameters. For parameters whose values cannot be

described by a single base or enumerated datatype, the Complex Datatype Table (Section 3.5.3),

must be used to define a new type by aggregating other datatypes into a structure. Once defined

in the Complex Datatype Table, the complex type can be recorded in the datatype column of such

parameters.

The Cardinality column is used to record the size of an array or sequence. A designation

of 1+ in this column allows for unbounded sequences. Cardinalities of multi-dimensional arrays

should include the sizes of every dimension listed in their normal order of precedence. A one (1)

should be entered in this column for any parameter that is composed of a single instance of the

datatype indicated in the Datatype column. Values other than one in this column indicates that the

parameter is an array or sequence of the datatype indicated in the Datatype column.

The Units, Resolution, Accuracy, and Accuracy Condition columns are not applicable if

the datatype for a parameter is either enumerated or both complex and heterogeneous. The reason

is that these classes of information are either unnecessary (for enumerated datatypes), or are

recorded for the individual fields of complex datatypes in the Complex Datatype Table. For these

and other datatypes in which units, resolution, and accuracy information do not apply (e.g.,

strings), the designator N/A for “Not Applicable” should be entered.

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199731

The Units column contains the units (e.g., m, km, kg) used for each parameter whenever

such units exist. Any units entered in this column specify the units of the entries in the Resolution

and Accuracy columns that follow it.

The Resolution column may have different kinds of entries, depending upon the kind of

parameter. For parameters of scalar numerical measures, the resolution column may contain a

single dimensioned numeric entry for each row of the table. This value may specify the smallest

resolvable value separating parameter values that can be discriminated. However, when such

parameters are stored in floating point datatypes, their resolution so defined might vary with the

magnitude of the parameter value. Hence, in these cases and others, a better sense of the

resolution may be conveyed by the datatype.

The Accuracy column is intended to capture the maximum deviation of the parameter

value from its intended value in the federate or federation. This is ordinarily expressed as a

dimensioned value, but may also be perfect for many discrete or enumerated parameters. The

Accuracy Condition column contains any conditions required for the given accuracy to hold in a

given simulation or federation execution. It may consist of reference to a particular type of update

algorithm that determines the accuracy, or may be an unconditional always.

3.4.3 Inclusion Criteria

In federations, any information elements that can be provided and associated with a given

interaction class (by the class publishers) that are deemed to be useful to subscribers of that

interaction class should be included and documented as interaction parameters in the Parameter

Table. For individual federates, SOM developers must associate with their publishable interaction

classes whatever information they feel will be needed by subscribers of their interactions to

calculate changes to the values of affected attributes. In addition, SOM developers must

determine what types of information must be included with interaction classes that the federate

may subscribe to, in order for that federate to calculate associated effects.

3.4.4 Example

Table 3-8 shows an illustrative example of parameters from the restaurant application as

described in Section 3.1.4. Here, the Main_Course_Served interaction has three parameters

associated with it. In this case, two of the three parameters are user-defined datatypes. Since the

Units through the Accuracy Condition columns do not apply for user-defined datatypes, only the

Datatype and Cardinality columns have entries for these first two attributes. The third parameter

uses a boolean datatype (yes or no) to reflect whether the meal was served in a reasonable amount

of time.

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199732

Parameter Table

Interaction Parameter Data-
type

Cardi-
nality

Units Resolution Accuracy Accuracy
Condition

Main_Course_
Served

Temperature_
OK Temp_Type 1 N/A

Accuracy_
OK Accur_Type 1 N/A

Timeliness_
OK

Boolean 1 N/A

 N/A

 N/A

 1

 N/A N/A

 N/A N/A

 perfect always

Table 3-8. Parameter Table - SOM Example

3.5 Attribute Table/Parameter Table Subcomponents

3.5.1 Purpose/Rationale

While both the Attribute Table and Parameter Table provide columns for datatype specifications,

they do not provide definitive guidance for specifying complex datatypes. This section describes

additional table formats for complex datatypes as well as for enumerated datatypes to better

document their structure and content. These tables are mandatory in situations where a federation

or federate implements the attribute or parameter datatypes for which the tables are designed.

3.5.2 Enumerated Datatype Table

Table 3-9 describes the format of the Enumerated Datatype Table. The first column defines the

identifier (or name) for the enumerated datatype, while the second column provides the specific

enumerated values that the identifier can assume. For instance, one potential identifier for an

enumerated datatype might be affiliation, with the values of red, blue, and neutral representing

valid enumerators. The Representation column of the Enumerated Datatypes Table allows the

federation to define the agreed-upon numerical value for the specific enumerators. Each identifier

name should appear as an entry in the Datatype column of the OMT Attribute Table or Parameter

Table, as was discussed in Sections 3.3.2 and 3.4.2. See Appendix A for a brief description of the

general format used for specifying the types of entries in this table.

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199733

Enumerated Datatype Table

Identifier Enumerator Representation

<datatype> <enumerator> <integer >

.

<datatype> <enumerator> <integer>

.

.

Table 3-9. Enumerated Datatype Table

An example of the use of the Enumerated Datatype Table is provided in Table 3-10. Here,

the user-defined Waiter_Tasks datatype specified in the earlier Attribute Table example (Section

3.3.4) is characterized according to five different enumerations. Each enumeration represents a

state that a waiter can be in at any particular point in time during restaurant operations. The

numerical representation of the enumerations does not have to be given in any particular order,

but does need to be documented to avoid inconsistent representations among different federates in

a federation.

Enumerated Datatype Table

Identifier Enumerator Representation

Waiter_Tasks Taking_Order 1

Serving 2

Cleaning 3

Calculating_Bill 4

Other 5

Table 3-10. Enumerated Datatype Table - SOM Example

3.5.3 Complex Datatype Table

Table 3-11 illustrates the format for the Complex Datatype Table. In the first column, Complex

Datatype, is the identifier, or name, of the user-defined complex datatype. Complex data type

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199734

identifiers should match a datatype entry from the Attribute Table, the Parameter Table, or from

the Complex Datatype Table itself. The next column, Field Name, provides the means to identify

each individual field within the complex datatype. For instance, a complex datatype representing

location (with Location as its identifier) might have three sub-rows with the field names of X, Y,

and Z (for rectangular coordinates). Alternately, two sub-rows with the field names of Lat and

Long might be used. The actual specification of the fields associated with a particular identifier is

entirely driven by the requirements of the federate or federation.

The remaining six fields in the Complex Datatype Table are identical to the corresponding

columns in the Attribute Table and Parameter Table (Sections 3.3.2, 3.4.2). The intent is to

capture these classes of information for each field within the complex data structure. For complex

attributes, this allows certain characteristics common to all fields (update type/condition,

transferable/acceptable, updateable/reflectable) to be specified at the composite level, while

characteristics distinctive of the individual fields of an attribute (units, resolution, etc.) are

specified at this lower level.

The Complex Datatype Table may also include the names of other complex datatype

identifiers within the Datatype column for individual field names. This allows users to build

“structures of data structures” according to the needs of their federate or federation. See

Appendix A for a brief description of the general format used in specifying the types of entries

permitted in this table.

An example of the use of the Complex Datatype Table is provided in Table 3-12. The first

complex datatype (Address_Type) is shown as consisting of four fields, each identified as an

String datatype. Each of the other two complex datatypes (Temp_Type and Accur_Type) consists

of three Boolean fields. The intent is to specify for each Main_Course (composed of one Entree

and two instances of Side_Dish) whether the waiter served exactly what the customer ordered

(Accuracy_OK parameter) and whether the food was the right temperature (Temperature_OK

parameter). This information is used by all recipients of the Main_Course_Served interaction to

determine the value of the customer attribute Satisfaction.

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199735

C
o

m
p

le
x

D
at

at
yp

e
T

ab
le

C
o

m
p

le
x

D
at

at
yp

e
F

ie
ld

 N
am

e
D

at
at

yp
e

C
ar

d
in

al
it

y
U

n
it

s
R

es
o

lu
ti

o
n

A
cc

u
ra

cy
A

cc
u

ra
cy

C

o
n

d
it

io
n

<
co

m
pl

ex
 d

at
at

yp
e>

<
fie

ld
>

<
da

ta
ty

pe
>

<
si

ze
>

<
un

its
>

<
re

so
lu

tio
n>

<
ac

cu
ra

cy
>

<
co

nd
iti

on
>

.
.

.
.

.
.

.
.

.
.

.
.

<
fie

ld
>

<
co

m
pl

ex
 d

at
at

yp
e>

.
.

.
.

.
.

.
.

.
.

.

...

<
fie

ld
>

<
si

ze
>

.
.

.
.

.
.

.
.

.
.

.
.

<
da

ta
ty

pe
>

<
da

ta
ty

pe
>

...
...

...
...

...
...

...

<
un

its
>

<
re

so
lu

tio
n>

<
ac

cu
ra

cy
>

<
co

nd
iti

on
>

<
si

ze
>

<
un

its
>

<
re

so
lu

tio
n>

<
ac

cu
ra

cy
>

<
co

nd
iti

on
>

.

.

Table 3-11. Complex Datatype Table

Object Model Template, Version 1.2 HLA OMT Components

__

Object Model Template, Version 1.2 13 February 199736

C
o

m
p

le
x

D
at

at
yp

e
T

ab
le

C
o

m
p

le
x

D
at

at
yp

e
F

ie
ld

 N
am

e
D

at
at

yp
e

C
ar

d
in

al
it

y
U

n
it

s
R

es
o

lu
ti

o
n

A
cc

u
ra

cy
A

cc
u

ra
cy

C

o
n

d
it

io
n

A
dd

re
ss

_T
yp

e
S

tr
ee

t
S

tr
in

g
1

N
/A

pe
rf

ec
t

al
w

ay
s

C
ity

S
tr

in
g

1

S
ta

te
S

tr
in

g

Z
ip

S
tr

in
g

T
em

p_
T

yp
e

E
nt

re
e

B
oo

le
an

1

V
eg

ie
_1

B
oo

le
an

V
eg

ie
_2

B
oo

le
an

A
cc

ur
_T

yp
e

B
oo

le
an

1

B
oo

le
an

B
oo

le
an

E
nt

re
e

V
eg

ie
_1

V
eg

ie
_2

1 1 1 1 1 1 1

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

1 1 1 1 1

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

al
w

ay
s

al
w

ay
s

al
w

ay
s

al
w

ay
s

al
w

ay
s

al
w

ay
s

al
w

ay
s

al
w

ay
s

al
w

ay
s

N
/A

N
/A

N
/A

N
/A

Table 3-12. Complex Datatype Table - SOM Example

Object Model Template, Version 1.2 FOM/SOM Lexicon

__

Object Model Template, Version 1.2 13 February 199737

4. FOM/SOM LEXICON

4.1 Purpose/Rationale

If interoperability between simulations is to be achieved, it is necessary not only to specify the

classes of data required by the templates above but also to achieve a common understanding of

the semantics of this data. The FOM/SOM Lexicon provides a means for federations to document

the definitions of all terms utilized during construction of FOMs, and for individual federates to

document the definitions of all terms provided in their SOMs.

Federations may want to develop additional views on FOM and/or SOM data besides

simple term definitions and those explicitly defined by the OMT tables. The absence of additional

data views in this document is not meant to constrain federation or simulation developers from

defining whatever data views make sense for their specific application. Rather, by providing

federation/simulation developers maximum flexibility in this regard, libraries of reusable data

views (and automated tools that support them) may be constructed and made available for general

use in future applications.

4.2 Table Formats

4.2.1 Object Class Definitions

This section describes the format for defining the object classes that are specified in a given FOM

or SOM. A simple template for describing this information is provided in Table 4-1. The first

column of this table should contain the names of all object classes described in the FOM or SOM,

with the second column describing the semantics for that class. Abstract, higher-level superclasses

of instantiable subclasses should be defined as such, along with their purpose in the object class

hierarchy. Object classes that can have direct instances (concrete classes) should provide a

description of the real-world entity the class is intended to represent, along with any additional

information required to clarify the semantics of the class (e.g., fidelity). Users may optionally

include the names of the attributes of the object class, and the interactions that the class can

initiate or be affected by in the textual description of that object class.

Object Model Template, Version 1.2 FOM/SOM Lexicon

__

Object Model Template, Version 1.2 13 February 199738

Object Class Definitions

Term Definition

<term name> <term definition>

<term name> <term definition>

.

<term name> <term definition>

Table 4-1. Object Class Definitions

4.2.2 Interaction Class Definitions

This section describes the format for defining the interactions that can occur between object

classes in the FOM, and interactions that can be published and/or reflected at the individual

simulation level in the SOM. The structure for describing this information is provided in Table 4-

2. The first column of this table should contain the name of each interaction class. The second

column should provide sufficient descriptive information about the interaction class to ensure that

the semantics are clearly understood. For abstract interaction classes, this should include the

rationale for the use of the class in the interaction class hierarchy, and (optionally) the list of

lower-level subclasses it supports. For publishable interaction classes, the definition should include

a description of the real-world event the interaction class is intending to represent. The names of

the initiating and receiving objects associated with the interaction, and the parametric information

that must be included with the interaction, may also be provided.

Interaction Class Definitions

Term Definition

<term name> <term definition>

<term name> <term definition>

.

<term name> <term definition>

Table 4-2. Interaction Class Definitions

Object Model Template, Version 1.2 FOM/SOM Lexicon

__

Object Model Template, Version 1.2 13 February 199739

4.2.3 Attribute Definitions

This section describes the format for defining the attributes that characterize HLA object classes.

The structure for describing this information is provided in Table 4-3. The first column of this

table should contain the name of the object class that a given attribute belongs to. This

information is useful for associating attributes with object classes, but is also required to

distinguish between attributes that share a common name but reside in different classes. The

second column of this table should contain the name of the attribute. The third column of this

table should describe the specific characteristic of the object class that this attribute is designed to

measure. Characteristics of the attribute that are described in the OMT Attribute Table (units,

resolution, update rate, etc.) may be repeated in the definition if it clarifies the meaning and

purpose for the term.

Attribute Definitions

Class Term Definition

<term name> <term name> <term definition>

<term name> <term name> <term definition>

.

<term name> <term name> <term definition>

Table 4-3. Attribute Definitions

4.2.4 Parameter Definitions

This section describes the format for defining the parameters that are associated with interaction

classes. The structure for describing this information is provided in Table 4-4. The first column of

this table should contain the name of the interaction class that a given parameter is associated

with. The second column of this table should contain the name of the parameter. The third column

of this table should describe the specific information that this parameter is designed to convey.

Characteristics of the parameter that are described in the OMT Parameter Table (units, resolution,

accuracy, etc.) may be repeated in the definition if it clarifies the meaning and purpose for the

term.

Object Model Template, Version 1.2 FOM/SOM Lexicon

__

Object Model Template, Version 1.2 13 February 199740

Parameter Definitions

Class Term Definition

<term name> <term name> <term definition>

<term name> <term name> <term definition>

.

<term name> <term name> <term definition>

Table 4-4. Parameter Definitions

Object Model Template, Version 1.2 Appendix A

__

Object Model Template, Version 1.2 13 February 199741

Appendix A: Table Entry Notation

The OMT table specifications for the Object Class Structure Table, Interaction Class Structure

Table, Attribute Table, and Parameter Table use a subset of Backus-Naur Form (BNF)

[NAUR60] to specify the types of entries that belong in particular table cells. In BNF, the types of

terms to be substituted in the table are enclosed in angle brackets (e.g., <class>). Optional entries

are enclosed in square brackets (e.g., [(<ps>)] for the optional Publishable/Subscribable

capability entries of the Object Class Structure Table). Any parentheses are terminal characters

which should appear as shown. Thus, the basic entry in a cell of the Object Class Structure Table,

designated by <class> (<ps>), indicates a class name followed by a Publishable/Subscribable

code in parentheses. An asterisk (*) is used to indicate a repetition of zero or more instances, such

as in the last column of the Object Class Structure Table where it indicates a variable number of

entries for the most specific types of classes, as follows:

[<class> (<ps>)] [,<class> (<ps>)]* | [<ref>]

A vertical bar (|) is used to indicate alternative possible entries. Thus, the specification for the last

column of the Object Class Structure Table (above) indicates optional entries of either a variable

length list of classes with Publishable/Subscribable codes or a reference to another table.

Object Model Template, Version 1.2 Appendix B

__

Object Model Template, Version 1.2 13 February 199742

Appendix B: Attribute/Parameter Basetypes

The following list defines the complete set of basetypes that may be used to characterize object

attributes or interaction parameters.

• float - IEEE single-precision floating point number*

• double - IEEE double-precision floating point number*

• short - 16-bit, two’s complement integer value in the range -215…215 - 1

• unsigned short - 16-bit, integer value in the range 0…216 - 1

• long - 32-bit, two’s complement integer value in the range -231…231 - 1

• unsigned long - 32-bit, integer value in the range 0…232 - 1

• long long - 64-bit, two’s complement integer value in the range -263…263 - 1

• unsigned long long - 64-bit, integer value in the range 0…264 - 1

• char - 8-bit quantity with a numerical value between 0 and 255 (decimal)

• boolean - 1-bit quantity which can only take one of the values TRUE and FALSE

• octet- 8-bit quantity guaranteed not to undergo any conversion

• any - permits the specification of values which can express any basetype

• string - one-dimensional array of “chars” which is terminated with a NULL (0

value) char

• sequence - one-dimensional array of any basetype with two characteristics: a

maximum size (which is fixed at specification time) and a length (which is

determined at run time)

* IEEE Standard (754-1985) for Binary Floating-Point Arithmetic (ANSI)

Object Model Template, Version 1.2 Acronyms

__

Object Model Template, Version 1.2 13 February 199743

Acronyms

ASCII American Standard Code for Information Interchange

BNF Backus-Naur Form

DoD Department of Defense

DMSO Defense Modeling and Simulation Office

FOM Federation Object Model

HLA High Level Architecture

N/A Not Applicable

OMT Object Model Template

OO Object-Oriented

RTI Runtime Infrastructure

SOM Simulation Object Model

Object Model Template, Version 1.2 References

__

Object Model Template, Version 1.2 13 February 199744

References

[DOD95] Department of Defense, Under Secretary of Defense (Acquisition and Technology)

(USD (A&T)), DoD Modeling and Simulation (M&S) Master Plan, Washington,

DC, October 1995.

[NAUR60] Naur, P. et al., “Report on the Algorithmic Language ALGOL 60,”

Communications of the ACM, Vol. 6, No. 1, January 1963, pp. 1-17.

Comments

Comments on this document should be sent by electronic mail to the Defense Modeling and

Simulation Office HLA Specifications mailing address (hla_specs@msis.dmso.mil). The subject

line of the message should include the OMT section number referenced in the comment. The body

of each submittal should include (1) the name and electronic mailing address of the person making

the comment (separate from the mail header), (2) reference to the portion of this document that

the comment addresses (by page, section number, and paragraph number), (3) a one-sentence

summary of the comment and/or issue, (4) a brief description of the comment and/or issue, and

(5) any suggested resolution or action to be taken.

